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News from AAMAS 2024

BEST PAPER AWARDS

Amongst the many excellent submission received, the conference
will honour two of the full papers in the main track with awards:
the Best Paper Award (for which all papers are eligible), and the
Pragnesh Jay Modi Best Student Paper Award (for a paper with a
principal author who is a student).

The three papers listed below arefi nalists for the Best Paper Award:

o Yaoxin Ge, Yao Zhang, Dengji Zhao, Zhihao Gavin Tang,
Hu Fu and Pinyan Lu. Incentives for Early Arrival in Coop-
erative Games.

e Evan Albers, Mohammad Irfan and Matthew Bosch. Beliefs,
Shocks, and the Emergence of Roles in Asset Markets: An
Agent-Based Modeling Approach.

o Grant Forbes, Nitish Gupta, Leonardo Villalobos-Arias,
Colin Potts, Arnav Jhala and David Roberts. Potential-Based
Reward Shaping for Intrinsic Motivation.

The three papers listed below arefi nalists for the Pragnesh Jay Modi
Best Student Paper Award:

e Tunai Tiang. Francesco Leofante. Antonio Rago and
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Very first slide of this course

Nash equilibrium (?)
and its inefficiency

Braess’s paradox
Reading: Ch 8 of EK

Total # of cars = 4000
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Computational game theory

* How to model strategic interactions?

* How to compute solutions like NE and CE?
* Pure vs. mixed NE

* How worse off is NE compared to socially best?




5/8/24

Congestion game

Players Cars

Resources Edges in a road network

An action/pure strategy of a A path in a road network
player = a subset of resources

Cost of a resource Cost of an edge
 # of players selecting it = # of cars using an edge
Cost faced by a player Total cost of the path taken

= Total cost of resources used by the player

Can you define a Nash equilibrium?
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A Class of Games Possessing Pure-Strategy Nash Equilibria

By ROBERT W. ROSENTHAL') -

Abstract: A class of noncooperative games (of interest in certain applications) is described. Each
game in the class is shown to possess at least one Nash equilibrium in pure strategies.

1. Description

There are n players (i = 1,...,n) and t primary factors (k = 1,...,t). The i**
player’s (i = 1,...,n) set of pure strategies contains s; elements (r;, = 1,...,s).
The r® pure strategy may be viewed as the selection of a particular subset of the
primary factors. The cost to i of playing the r;'® pure strategy is the sum of the
costs of each of the primary factors he selects. The individual factor costs ¢c;.
(identical for each player) are functions of x,, the number of people selecting
the k' factor, only. Thus, the cost to player i, if the strategy combination (ry, ...,r,)
is selected, is m(ry,....r) = Y. (X (ry, ...,¥)). A Nash equilibrium in pure

ker;
strategies is a pure-strategy combination (¥, ...,7¥) satisfying

m(r, ) S ik, LR ) =1, s i =1, .

GAMES AND ECONOMIC BEHAVIOR 14, 124-143 (1996)
ARTICLE NO. 0044

Potential Games
Dov Monderer*
Faculty of Industrial Engineering and Management, The Technion, Haifa 32000, Israel
and

Lloyd S. Shapley

Department of Economics and Department of Mathematics, University of California,
Los Angeles, California 90024

Received January 19, 1994

‘We define and discuss several notions of potential functions for games in strategic form.
We characterize games that have a potential function, and we present a variety of applica-
tions. Journal of Economic Literature Classification Numbers: C72,C73.  © 1996 Academic

Press, Inc.
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Potential game

For any player:

the difference in the payoffs for two strategy
profiles

is proportional to

the difference in the potential function.

11

What is a potential function?

* Global function: irrespective of players
* Cannot be payoff function in general

* Strategy profile = real number

* Not all games are potential games (meaning they
don’t have a potential function)

12
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Computational significance

* Best response dynamics converges into a PSNE

* Running time is pseudopolynomial

13

So, which games are
potential games?




THEOREM 3.1. Every congestion game is a potential game.

Proof. Let T' be the congestion game defined by the parameters N, M,
(Ziens (¢j)jem-
For each A € ¥ define

0;(4)
P(A)= ) (Zc,-(z)>. (3.2)

jeul_ Al \ I=1

Potential function (strategy profile A):

for each resource j used in strategy profile A:
for i =1 to # of players using resource j:
accumulate cost of j when i players use j

15

Theorem 3.2. Every finite potential game is
isomorphic to a congestion game.

16
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Algorithms

* Pseudopolynomial-time best-response dynamics

* Symmetric networks: Polynomial-time network
flow algorithm (Fabrikant et al., 2004)

17

Weighted
Congestion Games




Weight or demand

* Each player has a weight

* Cost of a resource = function of the sum of the
weights of the players using the resource

* Cost faced by a player: same as before

19
Complexity
PSNE existence is NP-complete for weighted
congestion games, even for constant number of
players (Dunkel and Schulz, 2008)

20
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k-Dimensional

Congestion Games
(k-DCGs)

Equilibria Computation in Multidimensional Congestion Games: CSP and
Learning Dynamics Approaches

Mohammad T. Irfan' Hau Chan? Jared Soundy?

! Department of Computer Science, Bowdoin College, Brunswick, Maine, USA
2School of Computing, University of Nebraska-Lincoln, Lincoln, Nebraska, USA

UAI 2024
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* Players have k-dimensional demand vectors:
width, length, weight, etc. of vehicles

» The cost of a resource is a real-valued
function of the aggregate demand (sum of

the demand vectors of the agents selecting
it)

23

CSP: Key idea

* In congestion games, the identify of the
players doesn’t affect a player’s payoff as
long as we know their choices of actions.

* So, what if we explore the “configuration

space” (space of aggregated demands)
instead strategy profiles?

24
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Usual CSP for games

BR; 2341 BR,

< \(3:? =
o N
3 R, R
BR, T334 BR;
(b)
Primal CSP Dual CSP
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New CSP for congestion games
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Primal CSP Dual CSP
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(@

Compare (b) and (d): Decoupling of players’ strategies in (d)

27

CSP-based algorithm

Procedure 1: Compute the domains of dual
variables v; y:
* What is player /’s best response to a given
configuration y?

* Next, we search for a PSNE without

computing the very expensive domain of v,
(strategy profiles consistent with y).

28
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CSP-based algorithm

Procedure 2: Search for a PSNE:

Given a configuration y, we obtain a PSNE
under it when:

(1) Each player plays their best response to y. \

(2) The resulting aggregate demand is y.

29

CSP-based algorithm

Solution strategy: dynamic programming:

» Sequentially consider the players’ best
responses toy.

T(y')=1iff3y"st. T_4(y") =1, and we can
go from y"“ to y' by considering some best
response of playeritoy.

30
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Results

Table 1: Our main results on k-dimensional congestion games (k-DCGs), k-class congestion games (k-CCGs), and variants. =
Notation: NPC = NP-Complete, n = # players, m = # resources, p = max # strategies, d; = player i’s demand vector,
dy =37, dj, Wmax = max; dy;, 72 = max # players selecting a resource in a binary k-DCG, or max # players of a type in
a k-DCG with player types, (i) = nonzero-element index in d; for k&-CCG, @max, bmax, and z are cost parameters.

t We give approximation algorithms for («, 8)-PSNE, which always exists. { Klimm and Schiitz [2022].

Problem PSNE Time Complexity to Determine or Compute PNSE
« General Cost k-DCG NPCt O ((Wmax) ™ (nkp®m?® + nkmp(wmax)™™))
&3 Subclass: Binary k-DCG NPC O (#W*™ (nkp*m? + min{nkmpi*™, nkm+1p})
O E Subclass: k-CCG NPC O ((Wmax) "™ (np*m? + nkpm(wmax)™))
= Subclass: k-DCG with player types NPC O ((#)™™(np*m? + nTpm(M)™) + Tnk)
Linear Cost k-DCG Always} @] (nkpm2 x n*m(amax + bmu)%)
»
%”E Linear Subclass: Binary k-DCG Always o (nkpm2 X n®m(Gmax + bmax) (k max; zj)2)
2 max; 2 "
§ QE» Linear Subclass: k-CCG Always | O (nkpm2 X 2m(@max + bmax)%ﬁ#m
Exponential Cost k-DCG Always} | O (nkpm2 X 225 (mexp(2 - AN)@max + MMbmax)
% - | Ordered d;’s, nondec. cost, singleton sirt. | Always O(nlogn + nmk)
g g Ordered d;’s, nondec. cost, shared strt. Always O(nlogn + npmk)
@ = Structured cost, singleton strt. Always O(nlogn + nmk)
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