











## Congestion game

| Terminology                                                    | Example                                      |               |
|----------------------------------------------------------------|----------------------------------------------|---------------|
| Players                                                        | Cars                                         | K             |
| Resources                                                      | Edges in a road network                      | $\rightarrow$ |
| An action/pure strategy of a<br>player = a subset of resources | A path in a road network                     |               |
| Cost of a resource<br>∝ <b># of players</b> selecting it       | Cost of an edge<br>= # of cars using an edge | ×             |
| Cost faced by a player<br>= Total cost of resources used       | Total cost of the path taken by the player   | X             |
|                                                                |                                              |               |





By ROBERT W. ROSENTHAL<sup>1</sup>)



Abstract: A class of noncooperative games (of interest in certain applications) is described. Each game in the class is shown to possess at least one Nash equilibrium in pure strategies.

#### 1. Description

There are *n* players (i = 1, ..., n) and *t* primary factors (k = 1, ..., t). The *i*<sup>th</sup> player's (i = 1, ..., n) set of pure strategies contains  $s_i$  elements  $(r_i = 1, ..., s_i)$ . The  $r_i^{th}$  pure strategy may be viewed as the selection of a particular subset of the primary factors. The cost to *i* of playing the  $r_i^{th}$  pure strategy is the sum of the costs of each of the primary factors he selects. The individual factor costs  $c_k$  (identical for each player) are functions of  $x_k$ , the number of people selecting the  $k^{th}$  factor, only. Thus, the cost to player *i*, if the strategy combination  $(r_1, ..., r_n)$  is selected, is  $\pi_i(r_1, ..., r_n) = \sum_{k \in r_i} c_k(x_k(r_1, ..., r_n))$ . A Nash equilibrium in pure strategies is a pure-strategy combination  $(r_1^*, ..., r_n^*)$  satisfying  $\pi_i(r_1^*, ..., r_n^*) \leq \pi_i(r_1^*, ..., r_{i-1}^*, r_{i+1}^*, ..., r_n^*)$   $r_i = 1, ..., s_i; i = 1, ..., n$ .



GAMES AND ECONOMIC BEHAVIOR 14, 124–143 (1996) ARTICLE NO. 0044 Potential Games Dov Monderer\* Faculty of Industrial Engineering and Management, The Technion, Haifa 32000, Israel and Lloyd S. Shapley Department of Economics and Department of Mathematics, University of California, Los Angeles, California 90024 Received January 19, 1994 We define and discuss several notions of potential functions for games in strategic form. We characterize games that have a potential function, and we present a variety of applications. Journal of Economic Literature Classification Numbers: C72, C73. © 1996 Academic Press, Inc.











# So, which games are potential games?















# *k*-Dimensional Congestion Games (*k*-DCGs)



















### Results

Table 1: Our main results on k-dimensional congestion games (k-DCGs), k-class congestion games (k-CCGs), and variants. Notation: NPC  $\equiv$  NP-Complete, n = # players, m = # resources,  $p = \max \#$  strategies,  $d_i =$  player i's demand vector,  $\mathbf{d}_N = \sum_i \mathbf{d}_i, w_{\max} = \max_j \mathbf{d}_{N_j}, \tilde{n} = \max \#$  players selecting a resource in a binary k-DCG, or max # players of a type in a k-DCG with player types, l(i) = nonzero-element index in  $\mathbf{d}_i$  for k-CCG,  $a_{\max}, b_{\max}$ , and z are cost parameters.  $\ddagger$  We give approximation algorithms for  $(\alpha, \beta)$ -PSNE, which always exists.  $\ddagger$  Klimm and Schütz [2022].

|                 | Duchland                                        | DENIE   | Time Complexity to Determine on Compute DNSE                                                                                                            |
|-----------------|-------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | Problem                                         | PONE    | Time Complexity to Determine or Compute PINSE                                                                                                           |
| CSP<br>Framewrk | General Cost k-DCG                              | NPC†    | $\mathcal{O}\left((w_{\max})^{km}(nkp^2m^2+nkmp(w_{\max})^{km})\right)$                                                                                 |
|                 | Subclass: Binary k-DCG                          | NPC     | $\mathcal{O}\left(\check{n}^{km}(nkp^2m^2 + \min\{nkmp\check{n}^{km}, n^{km+1}p\})\right)$                                                              |
|                 | Subclass: k-CCG                                 | NPC     | $\mathcal{O}\left((w_{\max})^{km}(np^2m^2+nkpm(w_{\max})^m)\right)$                                                                                     |
|                 | Subclass: k-DCG with player types               | NPC     | $\mathcal{O}\left((\check{n})^{\tau m}(np^2m^2+n\tau pm(\check{n})^m)+\tau nk\right)$                                                                   |
|                 | Linear Cost k-DCG                               | Always‡ | $\mathcal{O}\left(nkpm^2 	imes n^2m(a_{\max} + b_{\max})rac{\max_i  \mathbf{z} \cdot \mathbf{d}_i ^2}{\min_i  \mathbf{z} \cdot \mathbf{d}_i ^2} ight)$ |
| ning            | Linear Subclass: Binary k-DCG                   | Always  | $\mathcal{O}\left(nkpm^2 	imes n^2m(a_{\max}+b_{\max})\left(k\max_j z_j\right)^2 ight)$                                                                 |
| Lear            | Linear Subclass: k-CCG                          | Always  | $\mathcal{O}\left(nkpm^2 	imes n^2m(a_{\max}+b_{\max})rac{\max_j z_j^2}{\min_j z_j}rac{\max_i d_{i,l(i)}^2}{\min_i d_{i,l(i)}} ight)$                 |
|                 | Exponential Cost k-DCG                          | Always‡ | $\mathcal{O}\Big(nkpm^2 	imes rac{e}{e-1} ig(m\exp(\mathbf{z}\cdot\mathbf{d}_N)a_{\max}+nmb_{\max}ig)\Big)$                                            |
| * -             | Ordered $d_i$ 's, nondec. cost, singleton strt. | Always  | $\mathcal{O}(n\log n + nmk)$                                                                                                                            |
| l n n           | Ordered $d_i$ 's, nondec. cost, shared strt.    | Always  | $\mathcal{O}(n\log n + npmk)$                                                                                                                           |
| t St            | Structured cost, singleton strt.                | Always  | $\mathcal{O}(n\log n + nmk)$                                                                                                                            |
|                 |                                                 |         |                                                                                                                                                         |